电磁流量计 Modbus 通 讯 协 议

(版本号: W800-M V1)

通讯协议针对 L-mag 电磁流量计工业应用设计,版本: Lmag-BV1,该版本主要用于实时数据采集、流量测量、流量累计控制及部分参数的修改。

一、主机系统通讯部件要求

1.国际标准 RS-485 通讯接口部件或国际标准 RS-232 通讯接口部件,不小于 11 Bytes 的通信缓冲区(FIFO),支持 1200、2400、4800、9600、19200 通讯波 特率,支持半双工通讯模式。通讯程序应允许 FIFO,从机要求主机 FIFO 不小于 11Bytes。

二、协议结构

Lmag-BV1 协议遵从基本开放系统互连 (OSI) 参考模型,基本开放系统互连 参照模型提供通讯系统基本结构和要素,但 Lmag-BV1 协议使用简化的 OSI 参照模型,仅采用 1、2 和 7 层。

层号	层名	功能	L-magCP V3.4
7	应用层		L-magCP 命令
6	表示层		
5	会话层		
4	传输层		
3	网络层		
2	链路层	数据链路连接	L-mag CP Link
1	物理层	设备连接	RS-485、RS-232

基本开放系统互连参考模型

三、L-mag BV1 物理结构

L-mag 电磁流量计的 RS-485 通讯接口在物理结构上采用电气隔离方式,隔离电压 1500 伏。通讯数据传输接口为半双工方式,标准通讯速率大于 250khz,通讯方向转换时间 3.5uS。通讯接口电气标准遵从 RS-485 国际标准。

Lmag-BV1 可用于星型式网络结构和总线式网络结构。标准通讯连接介质为屏蔽双绞线。

四、Modbus 协议 RTU 消息帧定义

数据通讯由主机发起,主机首先发送 RTU 消息帧,消息帧发送至少要以 3.5 个字符时间的停顿间隔开始(如下图的 T1-T2-T3-T4 所示)。传输的第一个字节是设备地址。可以使用的传输字符是十六进制的 0...9, A...F。所有的从设备不断侦测网络总线,包括停顿间隔时间内。当第一个地址字节接收到,每个设备都进行解码以判断是否发往自己的。在最后一个传输字符之后,一个至少 3.5 个字符时间的停顿标定了消息的结束。一个新的消息可在此停顿后开始。

整个消息帧必须作为一连续的流转输。如果在帧完成之前有超过 1.5 个字符时间的停顿时间,接收设备将刷新不完整的消息并假定下一字节是一个新消息

的地址域。同样地,如果一个新消息在小于 3.5 个字符时间内接着前个消息开始,接收的设备将认为它是前一消息的延续。这将导致一个错误,因为在最后的 CRC 域的值不可能是正确的。主机消息帧定义如下所示:

起始位	设备地址	功能代码	寄存器地址	寄存器长度	CRC 校验	结束符
T1-T2-T3-T4	8Bit	8Bit	16Bit	16Bit	16Bit	T1-T2-T3-T4

图 3 主机 RTU 消息帧

从机消息帧定义如下所示:

起始位	设备地址	功能代码	数据	CRC 校验	结東符
T1-T2-T3-T4	8Bit	8Bit	n 个 8Bit	16Bit	T1-T2-T3-T4

图 4 从机 RTU 消息帧

五、Modbus 协议命令编码定义

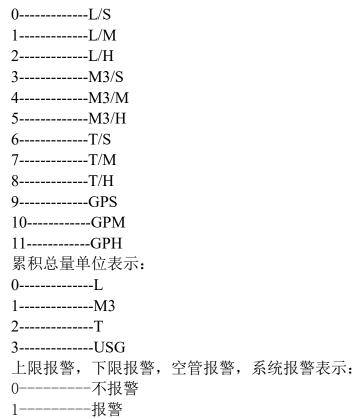
Lmag-BV1 协议遵从 **Modbus** 协议, , 但 Lmag-BV1 协议使用简化的 **Modbus** 协议, 仅采用 03、04 和 06 功能码。

功能码	名称	作用
01	读取线圈状态	保留
02	读取输入状态	保留
03	读取保持寄存器	保留
04	读取输入寄存器	读电磁流量计实时信息
05	强置单线圈	保留
06	预置单寄存器	保留
07	读取异常状态	保留
08	回送诊断校验	保留
09	编程 (只用于 484)	保留
10	控询(只用于 484)	保留
11	读取事件计数	保留
12	读取通信事件记录	保留
13	编程(184/384 484 584)	保留
14	探询(184/384 484 584)	保留
15	强置多线圈	保留

16	预置多寄存器	保留
17	报告从机标识	保留
18	(884 和 MICRO 84)	保留
19	重置通信链路	保留
20	读取通用参数(584L)	保留
21	写入通用参数(584L)	保留
22~64	保留作扩展功能备用	保留
65~72	保留以备用户功能所用	保留
73~119	非法功能	保留
120~127	保留	保留
128~255	保留	保留

六、电磁流量计寄存器地址定义

(针对 PLC 组态软件的专用寄存器)


PLC Addresses (Base 1)	Protocol Addresses (Base 0)	数据格式	寄存器定义
34113	0x1010	Float Inverse	瞬时流量浮点表示
34115	0x1012	Float Inverse	瞬时流速浮点表示
34117	0x1014	Float Inverse	流量百分比浮点表示(电池 供电表保留)
34119	0x1016	Float Inverse	流体电导比浮点表示
34121	0x1018	Long Inverse	正向累积数值整数部分
34123	0x101A	Float Inverse	正向累积数值小数部分
34125	0x101C	Long Inverse	反向累积数值整数部分
34127	0x101E	Float Inverse	反向累积数值小数部分
34129	0x1020	Unsigned short	瞬时流量单位
34130	0x1021	Unsigned short	累积总量单位
34131	0x1022	Unsigned short	上限报警
34132	0x1023	Unsigned	下限报警

		short	
34133	0x1024	Unsigned	空管报警
		short	
34134	0x1025	Unsigned	系统报警
		short	

七、基础数据解析

瞬时流量,瞬时流速,流量百分比,流体电导比,正反向累积量小数部分以浮点数的格式传输。正反向累积量得整数部分以长整型数传输。

瞬时流量单位表示:

2010年12月10日

附录 1:针对 PLC 的寄存器使用说明 以 modbus 调试软件 modbus poll 为例,使用 PLC 地址采集数据。 假设从机地址为 1,波特率 9600,想要采集瞬时流量,设置如下图。 图 1 设置数据显示格式

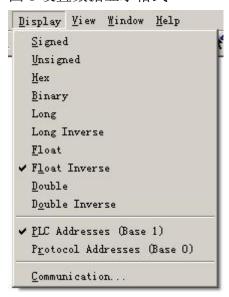
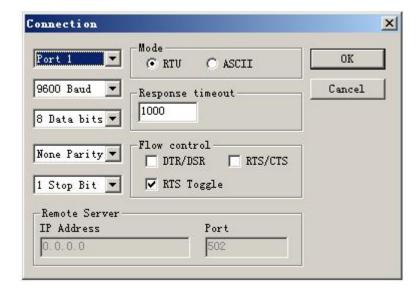



图 2 设置采集命令

Slave	1	OK
unction:	04 IMPUT REGISTER •	Cancel
Address: Length:	2	Apply
Scan Rate	1000 ms	

图 3 设置串口数据

以 modbus 调试软件 modscan32 为例,使用 protocol 为例采集数据: 图 1: 串口参数设置

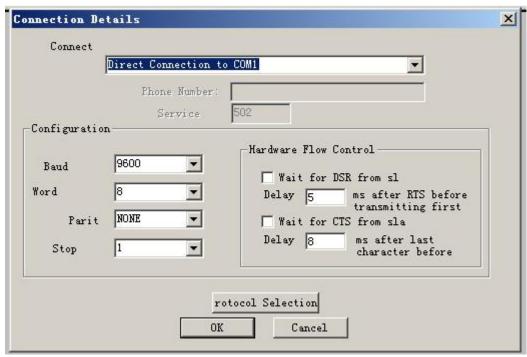
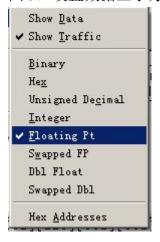



图 2: 设置采集命令

S	can	1000		(msecs	
us Data -					
Slave A	ddress:	1			
Point Ty	ype:	04 INPU	T REGIS	TER	Ī
Point A	ddress:	4113			
Length:		2			

图 3: 设置数据显示方式

以组态王 6.53 为例说明使用方法。

第一步:

创建组态王工程

第二步:

添加标准 modbus 设备,组态王设备列表里的-PLC-莫迪康-modbus (RTU)。

第三步:

设置设备地址,举例为1

第四步: 设置串口参数,举例为9600 n 8 1

第五步:

添加变量举例瞬时流量寄存器为 84113 格式为浮点数 (float), 同时添加流速,百分比,空管比,正反向累积值。

分别为

71 7117 7		
变量名	寄存器值	数据格式
瞬时流量	84113	Float
瞬时流速	84115	Float

流量百分比	84117	Float
流体电导比	84119	Float
正向累积值整数部分	84121	Long
正向累积值小数部分	84123	Float
反向累积值整数部分	84125	Long
反向累积值小数部分	84127	Float

寄存器值为8XXXX而不是3XXXX,原因详见组态王驱动说明

1)、组态王中寄存器列表

寄存器格式	寄存器范围	读写属性	数据类型	变量类型	寄存器含义
0 dddd	1-65535	读(打包)写	BIT	1/0离散	逻辑线圈 (OXXXX)
1 dddd	1-65535	读 (打包)	BIT	I/0离散	输入位寄存器 (1XXXX)
3 dddd	1-65535	读 (打包)	SHORT USHORT	I/0整型	輸入寄存器 (3XXXX)
4 dddd	1-65535	读(打包)写	SHORT USHORT	I/0整型	保持寄存器 (4XXXX)
7 dddd , kkkk	0-65535 0-65535	读 (打包) 写	SHORT USHORT LONG FLOAT	I/0整型 I/0实型	配置寄存器(扩展寄存器)(General Reference),第1个索引为偏移地址,第2 通道为文件序号
8 dddd	1-65535	读 (打包)	SHORT USHORT LONG FLOAT	I/0整型 I/0实型	輸入寄存器(8XXXX)
9 dddd	1-65535	读 (打包) 写	SHORT USHORT LONG FLOAT	I/0整型 I/0实型	保持寄存器 (9XXXX)
SwapF	0	只写	BYTE	I/0整型	浮点型字节顺序
SwapL	0	只写	ВУТЕ	I/O整型	长整型字节顺序
FMC	1-65535	只写	STRING	1/0字符串型	强制多线圈状态 说明: 1.该寄存器最多强制16个连续的线圈状态; 2.通道号为线圈的起始地址;

数据寄存	器对应的功能码			
功能码用十分	∖进制数表示。			
寄存器	读的功能码	写的功能码	 说明	
0	0x01	0x05	逻辑线圈	
1	0x02		輸入位寄存器	
3	0x04		輸入寄存器	
4	0x03	0x06	保持寄存器	
7	0x14	0x15	配置寄存器 (General Reference)	
8	0x04		輸入寄存器	
9	0x03	0x10	保持寄存器	
FMC		0x0F	强制多线圈状态	

第六步:

创建窗口界面并连接变量

第七步:

保存更改并运行工程

瞬时流量 -00116. 42999

瞬时流速 -04.118

流量百分比 041.17

流体电导比 00009

正向累积值整数部分 0145570342

正向累积值小数部分 0.000

反向累积值整数部分 0488902442

反向累积值小数部分 0.000

以力控 6.1 为例,说明使用方法第一步:

创建一个工程

第二步:

IO 口设备组态选择 IO 设备-modbus-标准 modbus-modbus (RTU 串口)

选择串口

设置显示数据格式

第三步: 数据库组态

设置数据格式及地址偏移

数据举例

	WANE [点名]	DESC [说明]	%IOLINK [I/0连接]	%HIS [历史参数]
1	ssll	瞬时流量	PV=mag511:ARF4113	
2	ssls	瞬时流速	PV=mag511:ARF4115	
3	115f5	流量百分比	PV=mag511:ARF4117	
4	ltddb	流体电导比	PV=mag511:ARF4119	
5	zxljzzsbf	正向累积值整数部分	PV=mag511:ARL4121	
6	zxljzxsbf	正向累积值小数部分	PV=mag511:ARF4123	
7	fxljzzsbf	反向累积值整数部分	PV=mag511:ARL4125	
8	fxljzxsbf	反向累积值小数部分	PV=mag511:ARF4127	

第四步:

创建窗口并连接变量

瞬时流量 #######

瞬时流速 ##.###

流量百分比 ###.##

流体电导比 ####

正向流量累积值整数部分 ########

正向流量累积值小数部分 #.###

反向流量累积值整数部分 ########

反向流量累积值小数部分 #.###

第五步: 运行工程 瞬时流量 -116.51999

瞬时流速 -4.121

流量百分比 41.20

流体电导比 8

正向流量累积值整数部分 145570342

正向流量累积值小数部分 0.000

反向流量累积值整数部分 488903076

反向流量累积值小数部分 0.000